Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Elife ; 92020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31922486

RESUMO

Emerging evidence suggests that hierarchical status provides vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.


Assuntos
Acetilcarnitina/farmacologia , Antidepressivos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Animais , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Comportamento Social
2.
Psychoneuroendocrinology ; 112: 104538, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31841985

RESUMO

Social hierarchy in social species is usually established through competitive encounters with conspecifics. It determines the access to limited resources and, thus, leads to reduced fights among individuals within a group. Despite the known importance of social rank for health and well-being, the knowledge about the processes underlying rank attainment remains limited. Previous studies have highlighted the nucleus accumbens (NAc) as a key brain region in the attainment of social hierarchies in rodents. In addition, glucocorticoids and the glucocorticoid receptor (GR) have been implicated in the establishment of social hierarchies and social aversion. However, whether GR in the NAc is involved in social dominance is not yet known. To address this question, we first established that expression levels of GR in the NAc of high anxious, submissive-prone rats are lower than that of their low anxious, dominant-prone counterparts. Furthermore, virally-induced downregulation of GR expression in the NAc in rats led to an improvement of social dominance rank. We found a similar result in a cell-specific mouse model lacking GR in dopaminoceptive neurons (i.e., neurons containing dopamine receptors). Indeed, when cohabitating in dyads of mixed genotypes, mice deficient for GR in dopaminoceptive neurons had a higher probability to become dominant than wild-type mice. Overall, our results highlight GR in the NAc and in dopaminoceptive neurons as an important regulator of social rank attainment.


Assuntos
Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Dominação-Subordinação , Hierarquia Social , Núcleo Accumbens/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Wistar , Receptores de Glucocorticoides/deficiência
3.
Front Physiol ; 9: 1047, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127751

RESUMO

The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.

4.
Bioessays ; 40(7): e1800012, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29869396

RESUMO

An intriguing question in the field of stress is what makes an individual more likely to be susceptible or resilient to stress-induced depression. Predisposition to stress susceptibility is believed to be influenced by genetic factors and early adversity. However, beyond genetics and life experiences, recent evidence has highlighted social rank as a key determinant of susceptibility to stress, underscoring dominant individuals as the vulnerable ones. This evidence is in conflict with epidemiological, clinical, and animal work pointing at a link between social subordination and depression. Here, we review and analyze rodent protocols addressing the relevance of social rank to predict vulnerability to chronic social stress. We also discuss whether a specific social status (i.e., dominance or subordination) is the appropriate predictor of vulnerability to develop stress-induced depression or rather, the loss of social rank and resources.


Assuntos
Comportamento Animal/fisiologia , Depressão/fisiopatologia , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Depressão/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Fatores de Risco , Estresse Psicológico/genética
5.
Curr Biol ; 27(14): 2202-2210.e4, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28712571

RESUMO

Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes.


Assuntos
Metaboloma , Núcleo Accumbens/fisiologia , Comportamento Social , Predomínio Social , Estresse Psicológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 37(29): 6851-6868, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630250

RESUMO

Energy-dense, yet nutritionally poor food is a high-risk factor for mental health disorders. This is of particular concern during adolescence, a period often associated with increased consumption of low nutritional content food and higher prevalence of mental health disorders. Indeed, there is an urgent need to understand the mechanisms linking unhealthy diet and mental disorders. Deficiency in n-3 polyunsaturated fatty acids (PUFAs) is a hallmark of poor nutrition and mood disorders. Here, we developed a mouse model of n-3 PUFA deficiency lasting from adolescence into adulthood. Starting nutritional deficits in dietary n-3 PUFAs during adolescence decreased n-3 PUFAs in both medial prefrontal cortex (mPFC) and nucleus accumbens, increased anxiety-like behavior, and decreased cognitive function in adulthood. Importantly, we discovered that endocannabinoid/mGlu5-mediated LTD in the mPFC and accumbens was abolished in adult n-3-deficient mice. Additionally, mPFC NMDAR-dependent LTP was also lacking in the n-3-deficient group. Pharmacological enhancement of the mGlu5/eCB signaling complex, by positive allosteric modulation of mGlu5 or inhibition of endocannabinoid 2-arachidonylglycerol degradation, fully restored synaptic plasticity and normalized emotional and cognitive behaviors in malnourished adult mice. Our data support a model where nutrition is a key environmental factor influencing the working synaptic range into adulthood, long after the end of the perinatal period. These findings have important implications for the identification of nutritional risk factors for disease and design of new treatments for the behavioral deficits associated with nutritional n-3 PUFA deficiency.SIGNIFICANCE STATEMENT In a mouse model mimicking n-3 PUFA dietary deficiency during adolescence and adulthood, we found strong increases in anxiety and anhedonia which lead to decreases in specific cognitive functions in adulthood. We found that endocannabinoid/mGlu5-mediated LTD and NMDAR-dependent LTP were lacking in adult n-3-deficient mice. Acute positive allosteric modulation of mGlu5 or inhibition of endocannabinoid degradation normalized behaviors and synaptic functions in n-3 PUFA-deficient adult mice. These findings have important implications for the identification of nutritional risk for disease and the design of new treatments for the behavioral deficits associated with nutritional n-3 PUFAs' imbalance.


Assuntos
Modelos Animais de Doenças , Endocanabinoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Lipídeos/deficiência , Transtornos Mentais/metabolismo , Plasticidade Neuronal , Receptor de Glutamato Metabotrópico 5/metabolismo , Envelhecimento/metabolismo , Animais , Humanos , Masculino , Transtornos Mentais/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Regulação para Cima/fisiologia
7.
Cell Rep ; 16(5): 1237-1242, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452462

RESUMO

Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress.


Assuntos
Ansiedade/metabolismo , Endocanabinoides/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/metabolismo , Estresse Psicológico/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Emoções/fisiologia , Glicerídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social
8.
Neural Plast ; 2016: 8574830, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057368

RESUMO

Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.


Assuntos
Emoções/fisiologia , Ácidos Graxos Ômega-3 , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Animais , Forma Celular/fisiologia , Hipocampo/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Neurônios/citologia , Sistema Hipófise-Suprarrenal/metabolismo
9.
Neuropsychopharmacology ; 40(12): 2774-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25948102

RESUMO

Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Inflamação/complicações , Transtornos da Memória/etiologia , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Citocinas/sangue , Citocinas/genética , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/sangue , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Coloração pela Prata
10.
Psychoneuroendocrinology ; 53: 82-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614359

RESUMO

Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) throughout gestation and lactation. At weaning, offspring were placed either on control (C-C, HF-C) or high-fat (HF-HF) diets. In adulthood, hippocampus-dependent memory was assessed using the water-maze task and potential hippocampal alterations were determined by studying PUFA levels, gene expression, neurogenesis and astrocyte morphology. Perinatal HFD induced long-lasting metabolic alterations and some changes in gene expression in the hippocampus, but had no effect on memory. In contrast, spatial memory was impaired in animals exposed to HFD during the perinatal period and maintained on this diet. HF-HF rats also exhibited low n-3 and high n-6 PUFA levels, decreased neurogenesis and downregulated expression of several plasticity-related genes in the hippocampus. To determine the contribution of the perinatal diet to the memory deficits reported in HF-HF animals, an additional experiment was conducted in which rats were only exposed to HFD starting at weaning (C-HF). Interestingly, memory performance in this group was similar to controls. Overall, our results suggest that perinatal exposure to HFD with an unbalanced n-6/n-3 ratio sensitizes the offspring to the adverse effects of subsequent high-fat intake on hippocampal function.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Memória Espacial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Lactação , Gravidez , Ratos , Ratos Wistar , Desmame
11.
J. physiol. biochem ; 68(4): 671-681, dic. 2012.
Artigo em Inglês | IBECS | ID: ibc-122315

RESUMO

N-3 polyunsaturated fatty acids (PUFAs) cannot be synthesized de novo in mammals and need to be provided by dietary means. In the brain, the main n-3 PUFA is docosahexaenoic acid (DHA), which is a key component of neuronal membranes. A low dietary level of DHA has been associated with increased risk of developing neuropsychiatric diseases; however, the mechanisms involved remain to be determined. In this study, we found that long-term exposure to an n-3 deficient diet decreases the level of DHA in the brain and impairs the cannabinoid receptor signaling pathway in mood-controlling structures. In n-3 deficient mice, the effect of the cannabinoid agonist WIN55,212-2 in an anxiety-like behavior test was abolished. In addition, the cannabinoid receptor signaling pathways were altered in the prefrontal cortex and the hypothalamus. Consequently, our data suggest that behavioral changes linked to an n-3 dietary deficiency are due to an alteration in the endocannabinoid system in specific brain areas (AU)


Assuntos
Animais , Ratos , Ácidos Graxos Insaturados/deficiência , Receptores de Canabinoides/metabolismo , Ansiedade/fisiopatologia , Dieta com Restrição de Gorduras/efeitos adversos , Endocanabinoides
12.
J Physiol Biochem ; 68(4): 671-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22707188

RESUMO

N-3 polyunsaturated fatty acids (PUFAs) cannot be synthesized de novo in mammals and need to be provided by dietary means. In the brain, the main n-3 PUFA is docosahexaenoic acid (DHA), which is a key component of neuronal membranes. A low dietary level of DHA has been associated with increased risk of developing neuropsychiatric diseases; however, the mechanisms involved remain to be determined. In this study, we found that long-term exposure to an n-3 deficient diet decreases the level of DHA in the brain and impairs the cannabinoid receptor signaling pathway in mood-controlling structures. In n-3 deficient mice, the effect of the cannabinoid agonist WIN55,212-2 in an anxiety-like behavior test was abolished. In addition, the cannabinoid receptor signaling pathways were altered in the prefrontal cortex and the hypothalamus. Consequently, our data suggest that behavioral changes linked to an n-3 dietary deficiency are due to an alteration in the endocannabinoid system in specific brain areas.


Assuntos
Ansiedade/metabolismo , Encéfalo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Sistema de Sinalização das MAP Quinases , Desnutrição/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Endocanabinoides/fisiologia , Feminino , Desnutrição/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Atividade Motora , Naftalenos/farmacologia , Comportamento Social
13.
Nat Neurosci ; 14(3): 345-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278728

RESUMO

The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Dieta , Endocanabinoides , Ácidos Graxos Ômega-3/metabolismo , Desnutrição/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal/fisiologia , Emoções/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...